Algorithmics Animation
Workshop (AAW)

Jay Karon and Nadav Hames

What is it?

e Interactive visualizations of data structures and algorithms
e Platform for students to learn from and contribute to
e Hosted on eecs.yorku.ca

The old site] E%u‘g“

UNIVERSITY

DICTIONARIES:

» Hashing_ (by Hang Thi Anh Pham, 2001)

o Splay Tree (by Sotirios Stergiopoulos, 2001)

* Red Black Tree (by Sotirios Stergiopoulos, 2001)
PRIORITY QUEUES:

o Leftist and Skew Heaps (by Soheil Pourhashemi, 2007)

* Binomial Heap (by Setirios Stergiopoulos, 2001)

* Fibonacci Heap (by Jason Huang Hu & Wei Wang, 2003)
DYNAMIC PROGRAMMING:

* Optimal Static Binary Search Tree (by Roman Gubarenko, 2005)
GRAPHS:

. Dl_]kstra Smgle Source Shortest Paths (by Hai Feng Huang, 2005)

2 Al Cemnssten e Taonn e Thrann ' hinnas YOO

Problems

Antiquated Java applets

Little documentation

Drawing not abstracted

Java dependencies duplicated
across project

High learning curve

Make accessible

Thorough documentation
High-level abstraction

Easily extendable, dependency
sharing

Lower contributing difficulty
Modern web design

Demo

@ Thewmin T B e R et P e

Ve -

a -

Under the hood

Written in TypeScript

D3.js for rendering

Webpack for bundling & compilation

Hosted on Github for version control & pull requests

Basic data structures & algorithms from Loiane Groner (with permission)

AAW Design - Separation of concerns

API Call
Min Heap ats TreeViz

addRoot()

Your Algorithm AAW Visualization
Implementation Node.label() Structure

Visualization Animation

Node.highlight() TreeViz.transition(state)

treeViz.pushState()

We will explain
what pushState()
does and the AAW
Design mentality
next!

AAW Design - Visualization Persistence

time=0 time=1 time=2 time=3 time=4 time=5 time=6
Timeline[State] Old State State New State | New State | New State

o) o)
Y The slider is pointing at y
History of States already Played time=3 which is the Newly Added States to be Played

current state being
rendered and displayed
on screen

NodeViz.highlight() ; These API calls make up the changes to the new
tree.pseudo.setCurrentLine (1) ; State to be pushed to the timeline

tree.pushstate() ; - appends state to the end of the timeline

controller.play(ms); - Moves the slider forwards until

reaching the end every ms milliseconds.

Contributing - Easier than ever!

e Based around Github
e Documentation
e (Guides

3. Your TS Visualization File

This section will break down a typical TS (TypeScript) visualization file into multiple components to help
you understand how to implement one for yourself. In this file, all of your visualization code will be written.
Create it in src/algs and name it something like myvVizTitle.ts.

Note: Your file will not compile unless it is included in visualizations.config.ts. Follow the
example template at the top of the config file to include your visualization.

All components mentioned below should be included together in your file. For this tutorial we will be using
the Tree Traversal visualization. See the full file in treeTraverals.ts.

Import Statements

Where classes and methods are imported from other files.

import {EdgeViz, NodeViz} from "../lib/components";
import {MultiTreeViz} from "../lib/structures";
import * as d3 from "d3";

import {Controller} from "../lib/gui";

import Queue from "../base/data-structures/queue";
import * as _ from "lodash";

A good IDE like IntelliJ IDEA will take care of this part automatically. So you can generally just forget about
it.

https://www.eecs.yorku.ca/~aaw/docs/classes/_lib_structures_.treeviz.html
https://www.eecs.yorku.ca/~aaw/docs/modules/_mddocs_markdowndocs_.visualization_template.html

AAW Url:

https://www.eecs.yorku.ca/~aaw/

